Resilience Design Patterns - A Structured Approach to Resilience at Extreme Scale (version 1.0)

نویسندگان

  • Saurabh Hukerikar
  • Christian Engelmann
چکیده

Reliability is a serious concern for future extreme-scale high-performance computing (HPC) systems. Projections based on the current generation of HPC systems and technology roadmaps suggest that very high fault rates in future systems. The errors resulting from these faults will propagate and generate various kinds of failures, which may result in outcomes ranging from result corruptions to catastrophic application crashes. Practical limits on power consumption in HPC systems will require future systems to embrace innovative architectures, increasing the levels of hardware and software complexities. The resilience challenge for extreme-scale HPC systems requires management of various hardware and software technologies that are capable of handling a broad set of fault models at accelerated fault rates. These techniques must seek to improve resilience at reasonable overheads to power consumption and performance. While the HPC community has developed various solutions, application-level as well as system-based solutions, the solution space of HPC resilience techniques remains fragmented. There are no formal methods and metrics to investigate and evaluate resilience holistically in HPC systems that consider impact scope, handling coverage, and performance & power efficiency across the system stack. Additionally, few of the current approaches are portable to newer architectures and software ecosystems, which are expected to be deployed on future systems. In this document, we develop a structured approach to the management of HPC resilience based on the concept of resilience-based design patterns. A design pattern is a general repeatable solution to a commonly occurring problem. We identify the commonly occurring problems and solutions used to deal with faults, errors and failures in HPC systems. The catalog of resilience design patterns provides designers with reusable design elements. We define a design framework that enhances our understanding of the important constraints and opportunities for solutions deployed at various layers of the system stack. The framework may be used to establish mechanisms and interfaces to coordinate flexible fault management across hardware and software components. The framework also enables optimization of the cost-benefit trade-offs among performance, resilience, and power consumption. The overall goal of this work is to enable a systematic methodology for the design and evaluation of resilience technologies in extreme-scale HPC systems that keep scientific applications running to a correct solution in a timely and cost-efficient manner in spite of frequent faults, errors, and failures of various types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale

Reliability is a serious concern for future extreme-scale high-performance computing (HPC) systems. Projections based on the current generation of HPC systems and technology roadmaps suggest the prevalence of very high fault rates in future systems. While the HPC community has developed various resilience solutions, application-level techniques as well as system-based solutions, the solution sp...

متن کامل

Pattern-Based Modeling of High-Performance Computing Resilience

With the growing scale and complexity of high-performance computing (HPC) systems, resilience solutions that ensure continuity of service despite frequent errors and component failures must be methodically designed to balance the reliability requirements with the overheads to performance and power. Design patterns enable a structured approach to the development of resilience solutions, providin...

متن کامل

An Investigation of Physical-Social Resilience at Urban Historical Declined Area with an Emphasis on Sustainable Urban Form by Optimal Distance Average Method (Case Study: Urban Historical Declined Area of Tehran)

Urban areas today face a number of structural problems that have a lot of impact on the extent of damages. These changes are evident in most cases, in addition to the physical dimensions, in both social and economic dimensions, one of which is exhausting. The concept of urban resilience, considering the extent of these changes, seeks to predict the damage, as easily as to stabilize a system tha...

متن کامل

Predicting the rate of cigarette smoking based on resilience and cognitive emotion regulation in the non-clinical population of Shiraz, Iran, 2016

Background: Cigarette smoking is considered a public health problem. Much research has been conducted on smoking and respective factors, but little research has addressed the prediction of the smoking rate based on various psychological variables. The present study was conducted aimed at predicting the smoking rate in the non-clinical population of Shiraz, Iran, in 2016, based on resilience and...

متن کامل

Inter-Agency Workshop on HPC Resilience at Extreme Scale

The following report summarizes the proceedings of a three-and-a-half day inter-agency workshop focused on the technical challenges of HPC resilience in the 2020 Exascale timeframe. The resilience problem is not specific to any particular program or agency; coordinated resilience solutions will be challenging because of the need for a truly integrated approach. The interagency workshop therefor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016